

Daniel Franco © 2007, All Right Reserved Multiscale analysis of the relationship among land use cover and streams water quality in the Venice lagoon watershed

8-12 July 2007 Wageningen

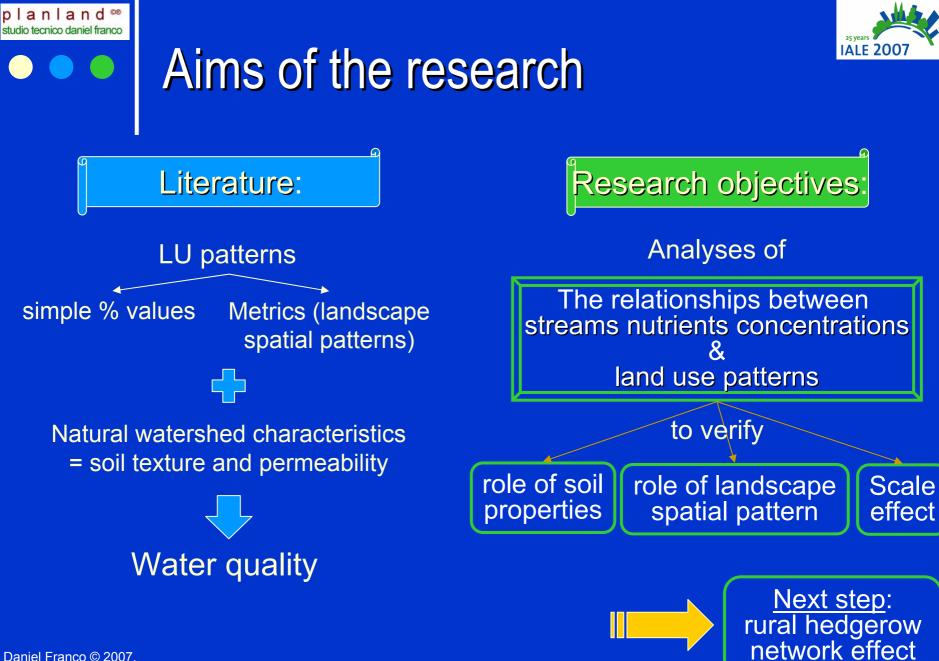
L. Favero¹, A. Zuin¹, E. Mattiuzzo¹, G. Zanetto², P. Ghetti³, D. Franco³

- ¹ Planland Cannaregio 3841, 30121 Venice (Italy)
- ² IDEAS San Giobbe 873, 30121 Venice (Italy). e-mail: ideas@unive.it
- ³ Università Cà Foscari Dorsoduro 3246, 30123 Venice (Italy).

Venezia

Chicagia

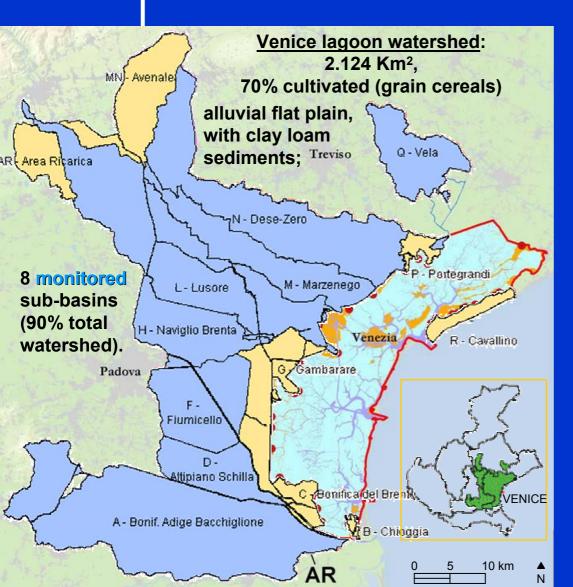
The context


Venice lagoon = fragile habitat threatened by water pollution.

Regional plan to reduce nutrients inputs to 3000 t yr⁻¹ for TN 300 t yr^{-1} for TP.

bocca di Malamocco

becca di Lido


Relationships between watershed Land Use (LU) \leftrightarrow surface water quality = info for management and planning purposes.

Dataset

Data from the "Veneto Regional Agency for the Environment Protection":

- N-NH₄ & N-NO₃ loads at the sub-basins outlets (2002-2004);
- digitised land use maps (satellite data 2001, 0.3 ha resolution);
- digitised soil characteristics maps;
- digitised streams and basins boundaries.

E) o

Data organization

Explicative variables

- Land Use types: 69 categories clustered into 7 classes =
 - urban, agriculture, industrial, zootechnics, tree farming and orchard, natural zones, vineyards.

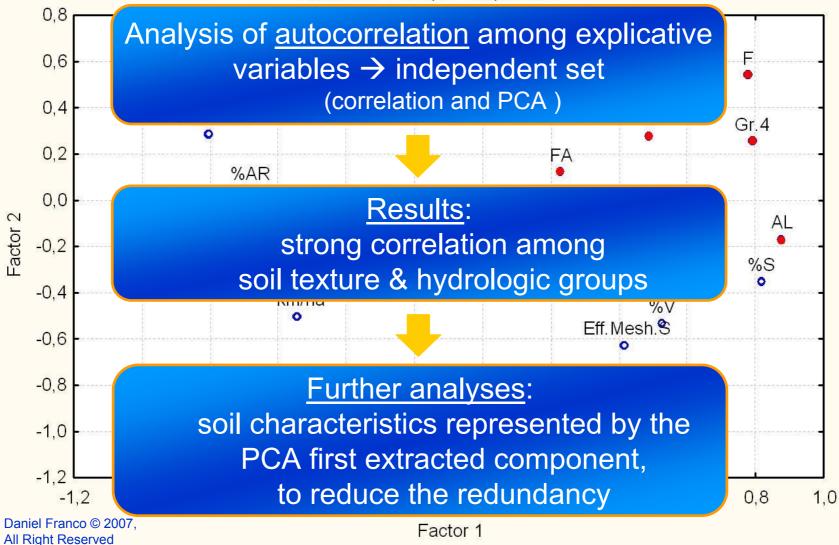
Soil characteristics:

- soil texture classes; hydrologic soil groups; permeability.
- Landscape metrics (selected from literature studies):
 - the Shannon-Wiener index for heterogeneity (Franco, 2000),
 - the Effective Mesh Size index for fragmentation (Jaeger, 2000).

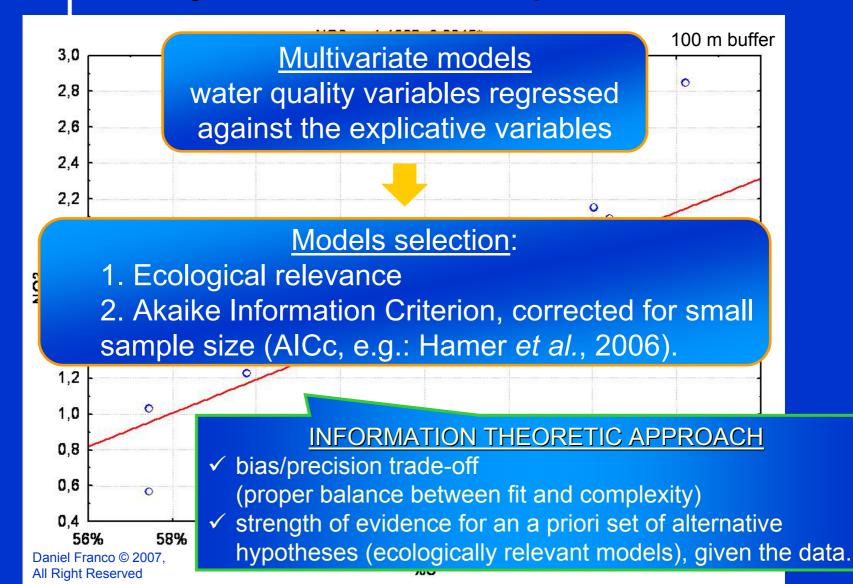
Landscape proximity analysis

<u>50 m</u>,

Daniel Franco © 2007, All Right Reserved


- = buffering concentric zones (0-50 and 0-100 m from streams) around the streams within each sub-basin.
 - The 50m and 100m values were selected:
 - from literature analysis (distance at which the explicative variables and/or the relationships strength changes)
 - based on the sub-basins shape.

Analyses: first step


Extraction: Principal components

Analyses: second step

Sub-basins selection

Daniel Franco © 2007, All Right Reserved

First regression results:

- → Peculiar behaviour of south sub-basins:
- High agricultural land useLow nitrogen loads
- → The whole stream network of this sub-basins is a reclaimed network
- → It is managed to reduce instream nutrients.

The reclaimed network management overrides the land use-water quality relationship:

 \rightarrow The 3 south sub-basins were excluded.

Competing models selected

Nutrient	Variables	R ²	∆AICc	Scale
N-NH ₄	IND(+), F1(+)	0.8	0.00	W
	URB(+), F1(+)	0.8	1.72	50m

URB: urban;

- IND: industrial;
- F1: PCA factor (soil texture & permeability);
- AICc: corrected Akaike Information Criterion.
- W: watershed scale
- In brackets the sign of the relationship.

Daniel Franco © 2007, All Right Reserved

NH₄ loads depend on

- o industrial land use (watershed scale),
- o urban land use (50m buffer scale),
- → higher concentration of sewage and waste disposal associated with urban & industrial areas (Jones et al., 2001).
- soil characteristics: high [NH₄] in fine textured, low permeable sub-basins
- → clay minerals and clay humics = large potential for nutrients adsorption
- → low permeability = overland flow → particulates & nutrients into rivers (Sliva & Williams, 2001).

Competing models selected

Nutrient	Variables	R ²	∆AICc	Scale
N-NO ₃	AG(+)	0.7	0.61	W
	Shannon(-)	0.7	1.76	W
	AG(+)	0.7	0.00	100m
	AG(+)	0.7	1.78	50m

AG: agriculture;

- Shannon: heterogeneity index;
- AICc: corrected Akaike Information Criterion.
- W: watershed scale

In brackets the sign of the relationship.

NO₃ loads dependent on:

- o agriculture (at the three scales),
- → contribution of fertilizers to non-point source pollution (e.g. Sliva & Williams, 2001)
- heterogeneity (watershed scale, inversely dependent).
- → impact of ecotone density on NO₃ dynamic:

Ecotone density = ditches in this ancient reclaimed land;

Ditches are managed to enhance nutrients removal.

Scale effect

LU near rivers is a better predictor of water quality than LU over the whole watershed?

o Literature:

- contrasting results.
- o Our study:
 - not significant differences among spatial scales

Venice watershed = highly impacted structure of the landscape: agriculture 60-75%, urban LU 9-28% natural zones < 8%, even in the 50m buffer zone.

Thanks for your attention

