

Biodiversità

Daniel Franco

Seguiamo un filo logico

- Cos'è la biodiversità?
- Chi la misura?
- Alcuni strumenti possibili
 - Misure della biodiversità
 - Impatti e previsioni

3.1 Cos'è la biodiversità?

tra soggettività ed oggettività

cosa ci affascina nella biodiversità?

il poeta ed il collezionista

- La fascinazione dell'essere circondati da innumere voli animali e piante o da paesaggi mutevoli è un elemento positivo che suscita un arcano ma preciso senso di piacere (fiaba mito religiosità)
- interesse nella complessità nel suo insieme, che varia (e.g. piacere umano nel dare un ordine: classificare e dare coerenza)
- la diversa percezione dello scrittore, dell pittore, del tassonomo, del genetista

Etica ed Estetica

- o la co(no)scienza, anche se non percepibile direttamente e fisicamente, genera un coinvolgimento estetico □ nella comprensione del oggetto (il problema) e conseguenti stati emotivi
- o

 posizioni etiche perché implicano, sulla base di una conoscenza personale, valutazioni morali sulla qualità della vita propria e delle generazioni future, o in senso più ampio il permanere della vita come la conosciamo

il peso dei filtri culturali

- o paradigma bio-centrico
 - il peso della "neutralità" e assenza di "giudizio" umano
- o paradigma socio-centrico
 - il peso della valutazione sociale

3.2 Chi la misura?

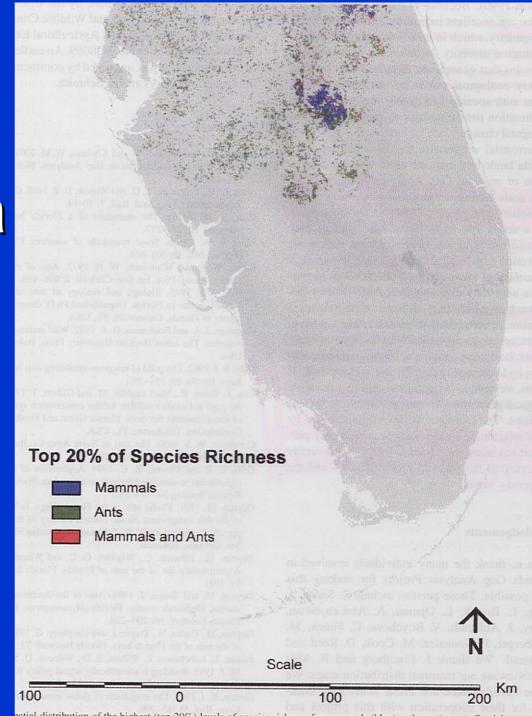
chi genera e consolida la consapevolezza sociale

Per approfondire vedi: Il ruolo degli esperti nelle società

3.3 <u>alcuni strumenti</u> possibili

i tentativi degli esperti

3.3.1 misure della biodiversità



anche qui non perdiamo la bussola ...

- Chi è degno di essere misurato?
- Indici per i degni: no spazio, no tempo
- Dagli indici ai modelli (costruiti con le misure)

bio-diveristà di chi?

ancora su soggettività ed oggettività

per quanti siano gli sforzi per rendere oggettiva la valutazione, risulta evidente che le analisi tendono a concentrarsi, in particolare nei processi legati alla conservazione della natura con tutte le conseguenze di ordine emotivo ed evocativo che questa ha, sempre su poche specie o *taxa*

focalità delle specie

- o gilde, gruppi di specie focali, gruppi ecologici, landscape species:
 - le specie focali che vanno a formare una gilda o un gruppo ecologico possono essere
 - a) area/habitat limitate,
 - b) limitate dal movimento
 - c) limitate da processi
 - d) limiate dalle risorse disponibili in maniera critica e temporanea
- definite da conoscenze scientifiche generali e locali relative alle diverse specie, alle quali possono associarsi le caratteristiche ecologiche del paesaggio considerato

sfocalità delle specie

 l'utilizzo di liste rosse o blu non è esaustivo per l'analisi del problema, ma può contribuire alla individuazione dei gruppi specifici

...<u>indici quali-quantitativi</u> (nè spazio, nè tempo)

- indici di α, β e γ diversità e similarità, calcolati e confrontati in molti modi diversi (qualitativi e statistici)
 - α: locale che tiene conto del numero di specie in un relevé
 - γ: regionale che tiene conto delle specie in una regione (senza barriere significative)
 - β: turnover, come varia la diversità da un habitat ad un altro (β = γ / α)
- cercano di sintetizzare la complessità delle organizzazioni di organismi viventi a diverse scale gerarchiche, da popolazione a comunità, attraverso il riconoscimento ed il conteggio degli individui appartenenti alle diverse specie

diversità

- ricchezza numero totale specie
- indice di Shannon:
 p_i = proporzione di superficie occupata dalla i_{ma} specie di un dato relevé

$$H = -\sum_{i=1}^{J} p_i \ln p_i$$

Indice di Simpson:
 ricchezza e proporzione di specie
 (probabilità che due individui
 selezionati a caso in una certa area
 appartengano a categorie
 tassonomiche differenti)
 p_i = abbondanza relativa specie i_{ma}

$$D = 1 - \sum_{i=1}^{S} p_i^2$$

diversità

indice di equitabilità:

equiparazione delle specie nella comunità:

il valore minimo (0) corrisponde a dominanza assoluta di un taxon;

il valore massimo (1) indica che tutti i taxa sono egualmente distribuiti

$$E = \frac{H}{H_{\text{max}}} = \frac{-\sum_{i=1}^{S} p_i \ln p_i}{\ln S}$$

 Hmax = il valore massimo raggiungibile dall'indice di diversità di Shannon per quella comunità, H è il valore reale dell'indice; In presenza di diversità massima Hmax= InS, con S pari al numero totale di specie presenti.

similarità

- indice di Sörensen:
 misura la somiglianza tra due comunità e si basa su
 dati di presenza/assenza;
 1= somiglianza completa,
 0= nessuna specie in comune
- Is = 2a/2a+b+c
 - a = numero di specie comuni,
 b = numero di specie nel sito A,
 c = numero di specie nel sito B.
 - Is è moltiplicato per 100% e può essere rappresentata in termini di diversità (cioè, Ds = 1,0 - Is)

similarità

- indice di overlapping: consente di valutare il grado di somiglianza tra le distribuzioni delle specie comuni di due comunità
 - il valore è determinato dalla sommatoria dei valori minimi di abbondanza percentuale delle specie condivise
 - assume valori compresi tra 0 e 1,
 0= mancanza di specie comuni tra le comunità,
 1=le comunità mostrano una uguale distribuzione delle specie comuni

problemi con abbondanza e diversità (nella stima)

- le due variabili fondamentali per stimare la diversità di organismi sono
 la abbondanza (scala dipendente ed additiva) e la ricchezza di specie (scala dipendente e non additiva)
 - abbondanza: al variare della scala risulta mantenere
 l'informazione quantitativa e topologica (hot spots e cold spots rimangono tali)
 - ricchezza: non presenta queste caratteristiche, e confrontare aree diverse a scale diverse con metodologie basate su questo criterio può essere fuorviante: gli stesso hot spots possono risultare cold spots ad un'altra scala

Da indice a modellino: ripartizione della varianza

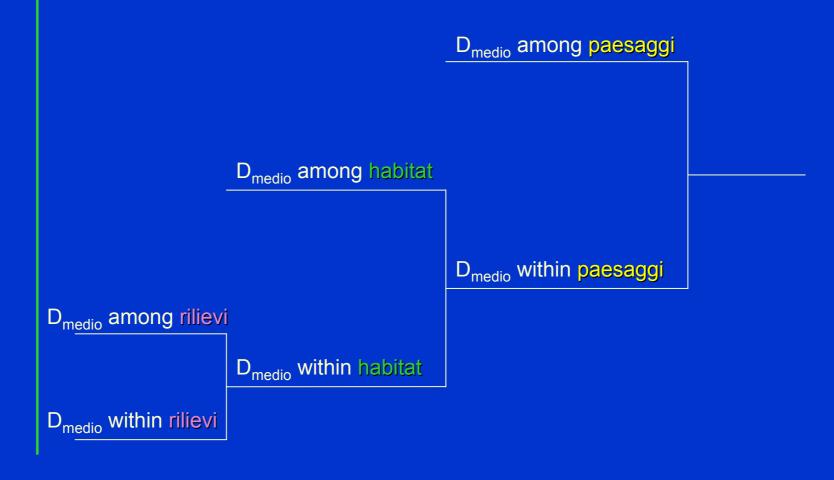
- Additive partitioning con indice di Simpson (ricchezza-proporzione)
 - D a livello di comunità può essere espresso come:

D medio a livello di *sito* (rilievo) (alfadiversità) (betadiversità) = D Totale (gammadiversità)

• Il vantaggio è che si conduce una analisi multiscalare q = peso proporzionale al numero o all'estensione dei rilievi per ogni comunità J p_{ij} = proporzione della specie i-esima nella comuntà j-esima; $\bar{p}_i = \sum_i q_j p_{ij}$

D_medio_within =
$$1 - \sum_{i} q_{i} \sum_{i} p_{ij}^{2}$$

$$D_among = \sum_{j} q_{j} \sum_{i} \left(p_{ij} - \overline{p}_{i} \right)^{2}$$



Additive partitioning

- La similarità tra le comunità è data da
 - ΨD = Dmedio within / Dtot
- il sistema funziona a più scale (rilievo, patch, paesaggio)

Valori crescenti dell'indice

Additive partitioning

- o permette di esplorare simultaneamente il contributo di ogni diversità nested alla diverstià complessiva
- le comunità sono stabilite a priori, e sono i paesaggi diversi o le scale diverse, e si verifica l'ipotesi che la biodiversità sia effettivamente tale tra i paesaggi considerati
- la scala è valutata intrinsecamente dal sistema di valutazione è determinata dalle aggregazioni a diversa scala effettuate

3.3.2 impatti e previsioni i modelli

modelli

- o strumento formale (statistico, deterministico, Delfi, BB, spazio esplicito, spazio implicito, ...) rappresentativo di un sistema in grado di simularne-prevederne il comportamento rispetto alle osservazioni
- o no modello ⇒ no previsione
- consideriamo solo modelli che <u>possono</u> includere lo spazio o il tempo nelle valutazioni
 - 1. Misura/stima biodiversità
 - 2. Modelli di (meta)popolazione

o habitat specificity

 cerca di stimare l'effetto della struttura del paesaggio e della dipendenza delle stime di diversità/rarità rispetto alla scala di indagine

o hotspots di biodiversità

 stimano geograficamente la biodiversità mediante una analisi tra le relazioni delle caratteristiche ambientali/ geografiche e biodiversità per guidarne quindi le strategie di gestione a scala regionale

GAP Analysis

- combina carte della vegetazione e informazioni ancillari (topografiche ed idrografiche) per stimare la distribuzione ad ampia scala dei vertebrati (studi ed opinioni di esperti)
- o modelli Wildlife Habitat Relationships (WHR)
 - stimano invece matrici relazionali tra caratteristiche favorevoli di habitat e presenza di specie (studi ed opinioni di esperti)

Habitat Suitability Index (HSI)

 esempi su base statistica di WHR a scala più fine (sia pareri, che relazioni statistiche sulle osservazioni presenzaassenza)

o modelli intermedi HSI

 a scala intermedia: utilizzano anche parametri di configurazione spaziale del paesaggio per la previsione dei risultati

o Esempi di HSI

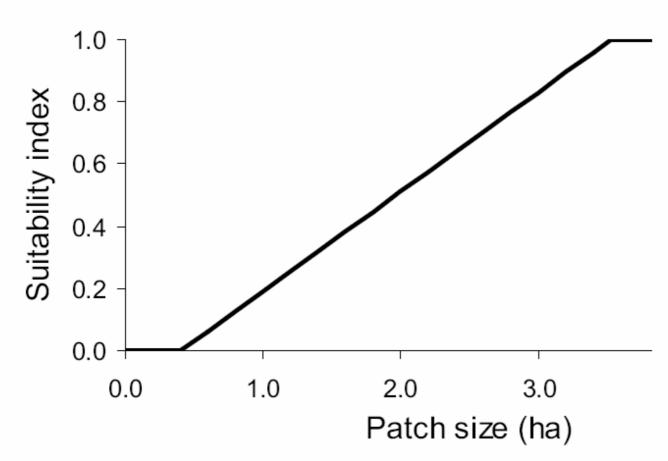
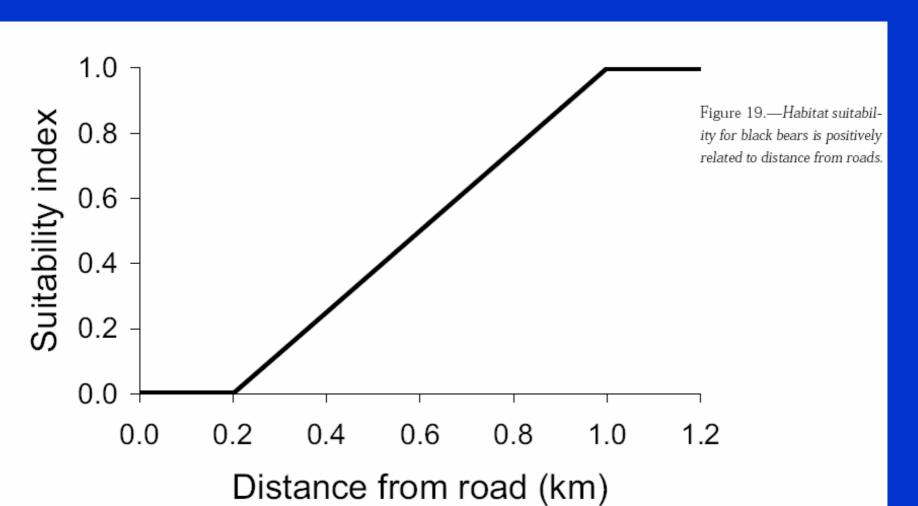



Figure 11.—Suitability of habitat patches for prairie warblers is positively related to patch size.

o Esempi di HSI

Esempi di HSI

Table 6.—Relevant life and habitat requisites and their corresponding HSI model parameters from LANDIS for 12 species in southern Missouri

Species	Life requisite	Habitat requisite	Model parameters and implementation	HSI equation
Ovenbird	Nesting cover and food	Mature hardwood forest	SI ₁ : Tree age by land type ^a SI ₂ : Tree species group	
	Nesting cover	Edge avoidance	SI ₃ : Moving window analysis on SI ₁	SI ₁ x SI ₂ x SI ₃
Prairie warbler	Nesting cover and food	Early-successional woody vegetation	SI ₁ : Tree age by land type	
	Nesting cover	Large habitat patches Edge avoidance	SI ₂ : Patch size algorithm SI ₃ : Moving window analysis on SI ₁	(SI ₁ x SI ₂) ^{0.5} x SI ₃
Hooded warbler	Nesting cover	Early-successional hard- wood vegetation	SI ₁ : Tree species group Tree age (see SI ₂ below)	
	Food	Mature hardwood forest	SI ₁ : Tree species group Tree age (see SI ₃ below)	
	Nesting cover and food	Site productivity Interspersion of nesting and foraging habitat	SI ₂ : Land type SI ₃ : Moving window analysis on tree age	SI ₁ x (SI ₂ x SI ₃) ^{0.5}
Pine warbler	Nesting cover and food	Mature coniferous forest	SI ₁ : Tree age SI ₂ : Tree species group	SI ₁ x SI ₂
Wild turkey	Nesting and brooding cover	Forest openings	SI ₁ : Tree age by land type	
	Adult cover Fall and winter food	Mature forest Hard mast	SI ₂ : Tree age by land type SI ₃ : Model of tree age, tree species group,	
	Cover and food	Interspersion of life requisites	and land type ^a SI ₄ : Moving window analysis on SI ₁ and mean of SI ₂ and SI ₃	(max{SI ₁ , [(SI ₂ + SI ₃) / 2]} x SI ₄) ^{0.5}
Ruffed grouse	Fall and winter food	Hard mast	SI ₁ : Model of tree age, tree species group, and land type	
	Cover	Dense forest regeneration Large habitat patches	SI ₂ : Tree age by land type SI ₃ : Patch size algorithm	
	Food and cover	Interspersion of life requisites	SI ₄ : Moving window analysis on SI ₁ and mean of SI ₂ and SI ₃	{max[SI ₁ , (SI ₂ x SI ₃) ^{0.5}] x SI ₄ } ^{0.5}
Gray squirrel	Winter food	Hard mast	SI ₁ : Model of tree age, tree species group, and land type	
	Cover	Mature forest	SI ₂ : Tree age by land type	$min(SI_1, SI_2)$
Black bear	Fall and winter food	Hard mast	SI ₁ : Model of tree age, tree species group, and land type	
	Summer and fall food	Soft mast	SI ₂ : Tree age by land type	
	Food	Interspersion of seasonal foods	SI ₃ : Moving window analysis on SI ₁ and SI ₂	
	Cover	Road avoidance	SI₄: Distance-to-road algorithm	[max(SI ₁ , SI ₂) x SI ₃] ^{0.5} x SI ₄

fonti di incertezza ed errore ...

- Strettamente sito specifici
 - se basati su analisi statistiche dei dati di presenza assenza
- differenti di land use portano a differenze negli output dei modelli
 - testare i diversi livelli di risoluzione
 - l'utilizzo dei modelli ad ampie scale deve tenere conto della forte componente geografica: diverse classificazioni della stessa variabile di copertura devono essere utilizzate per rappresentare habitat nelle diverse aree geografiche (influenza dell'utilizzo delle risorse)

fonti di incertezza ed errore ...

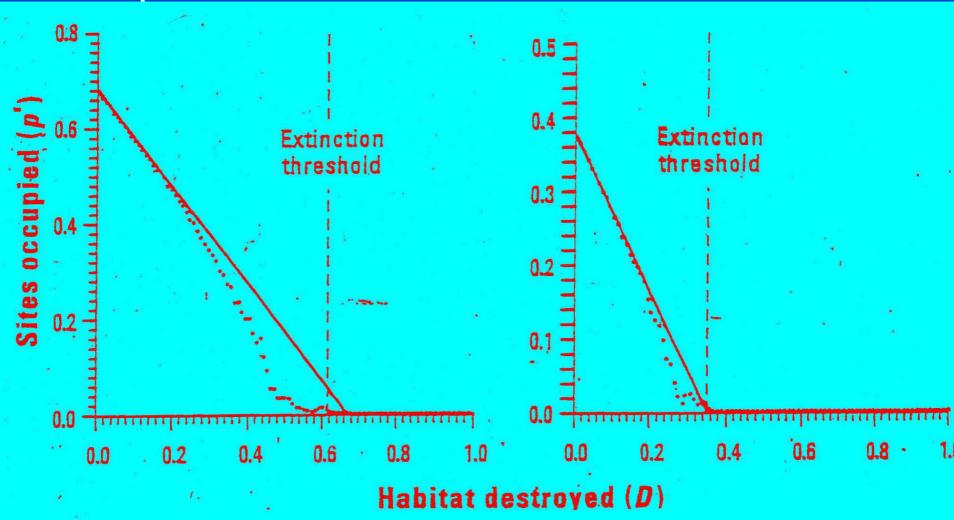
- Nei WHR (o HSI se exp. Based) l'incertezza e massima nelle classi intermedie, sia per la consistenza delle funzioni modellate, si per l'incertezza dei dati di imput: con difficoltà possono essere usati per
 - stimare variazioni di popolazione per piccole variazioni di qualità ambientale (variabili input)
 - stimare l'entità delle popolazioni dalla qualità ambientale misurata

Modelli di meta-popolazione

- In un paesaggio
 - il mosaico di ecosistemi (ecotopi) è altamente eterogeneo
 - quasi tutte le specie dipendono dalla eterogeneità del sistema
 - sebbene l'isolamento sia un problema per alcune specie, questo è generalmente un caratteristica secondaria in un paesaggio rispetto alla teoria biogeografica
- o
 ⇒ le caratteristiche spaziali del paesaggio influenzano le dinamiche di (meta) popolazione

la teoria delle metapopolazioni

una metapopolazione (Levins, 1969, 1970) è costituita da una serie di subpopolazioni separate spazialmente, ma connesse funzionalmente dalla capacità dispersiva dei loro componenti


- dp/dt = cp (1-D-p)-mp
 - p=proporzione macchie colonizzate nel tempo e nello spazio,
 - c=tasso colonizzazione,
 - m=tasso di estinzione,
 - D=proporzione dei siti non più disponibili

La soglia di estinzione

- la soglia di estinzione in una condizione di equilibrio si verifica quando la frazione di habitat distrutto raggiunge un certo valore
- la relazione generalmente non è lineare, come si potrebbe assumere dalla funzione

modelli di metapopolazione

- o spazio impliciti
- o spazio espliciti (cellular automata)
- spazio espliciti con variazioni di qualità ambientale
- o spazio-tempo espliciti
- o spazio espliciti realistici

tre regole d'oro (per 1 metapopolazione)

- 1. rendere minima la distanza tra habitat "favorevoli" **non** è un fattore necessariamente positivo
- 2. la distribuzione di habitat "favorevoli" dovrebbe essere: inferiore alla capacità dispersiva ma superiore alla distanza critica di correlazione dei fenomeni di estinzione (e.g. scomparsa o modificazione di un habitat), la connettività è in fase non critica o critica
- 3. la gestione della configurazione è fondamentale quando la connettività rispetto alla dispersione si trova in una fase critica o disconnessa, e *nessun* habitat "favorevole" si trova all'interno dello spazio definito dalla distanza di correlazione dei fenomeni di estinzione (la distribuzione dovrebbe essere la più omogenea possibile, e meno favorita quella a catena)